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The classical trajectory of an initially unbound positron within the electric field of an antiproton and a
uniform magnetic field is simulated in three dimensions. Several simulations are run incorporating experimen-
tal parameters used for antihydrogen production, which has been achieved by two different groups �M. Amor-
etti et al., Nature �London� 419, 456 �2002�; G. Gabrielse et al., Phys. Rev. Lett. 89, 213401 �2002��. The
simulations indicate that temporary bound states of antihydrogen can form at positive energies, where the
energy of the system is defined to be zero when the positron and antiproton are at rest with infinite separation.
Such quasibound states, which form only when the magnetic field is present, are typically smaller than 0.4 �m
in a dimension perpendicular to the magnetic field. An analytical model is developed for a formation cross
section, and it is found that quasibound states may form more frequently than stable Rydberg states.
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I. INTRODUCTION

Antihydrogen atoms have recently been produced using
nested Penning traps by the experimental groups ATRAP
and ATHENA �1–4�. Under certain conditions, nested Pen-
ning traps allow for two oppositely signed plasma species to
be confined with overlapping confinement regions using a
uniform magnetic field and a superimposed electric field
�5–7�. In the antihydrogen production experiments, antipro-
tons are made to interact with a positron plasma, and antihy-
drogen atoms have been reported to be produced in weakly
bound states �8�. Various processes involving weakly bound
hydrogen and antihydrogen atoms in a magnetic field are
considered theoretically in Refs. �9–18�. Of particular note is
the work reported in Refs. �16,17�, where classical trajectory
simulations, which employed the guiding center approxima-
tion, were used to simulate three-body recombination with
initially unbound particles. In other work, classical trajectory
simulations of two-body interactions between charged
particles in a magnetic field were reported, and the chaotic
nature of the interactions was investigated �19,20�. In the
work presented here, a binary interaction between a positron
and an antiproton within a uniform magnetic field is investi-
gated using parameters that are typical of the antihydrogen
production experiments. A preliminary summary of the work
presented here was reported elsewhere �21�. Section II de-
scribes the development of a computer simulation of the
classical trajectory of an initially unbound positron that en-
counters an antiproton in the presence of a uniform magnetic
field. The full three-dimensional motion of the positron is
simulated. �Thus, the guiding center approximation is not
used.� It is found that a binary interaction between an ini-
tially unbound positron and an antiproton can result in the
formation of a quasibound state of antihydrogen. No energy
is transferred to or from the two-body system in the simula-
tion. The physical basis for the formation of quasibound an-
tihydrogen states is discussed. In Sec. III, an analytical ex-
pression that can be used to calculate an approximate cross
section for the formation of quasibound states is obtained.
The expression is compared to simulation results, and rea-
sonable agreement with simulation results is found. A discus-

sion of time scales is also presented. First, it is shown that
the formation of quasibound states can increase the positron
and antiproton interaction time substantially compared to the
interaction time in the absence of an external magnetic field.
Next, an expression for an approximate time scale associated
with the rate of formation of quasibound antihydrogen states
is obtained and is compared to a three-body recombination
time scale. A brief discussion of two possible effects that
quasibound state formation may have on antihydrogen pro-
duction experiments is provided in Sec. IV, along with a
concluding summary.

II. CLASSICAL TRAJECTORY SIMULATION

To compute the trajectory of a positron near an antiproton,
the motion of the positron is treated classically, and the
antiproton is approximated as a fixed point particle. A
coordinate system is defined with the origin at the antiproton,
and the position of the positron is denoted with the vector

r=xî+yĵ+zk̂. The force on the positron due to the electric
field of the antiproton is FE= �kCq1q2r /r3�, where
kC=1/ �4��0� is the Coulomb force constant �SI units are
used�, and q1 and q2 are the charges of the positron and the

antiproton, respectively. A magnetic field, B=Bk̂, acts on the
positron with a force given by FB=kLq1�v�B�, where kL is
the Lorentz force constant �kL=1 in SI units� and v=r� is the
positron velocity. The total force acting on the positron is
related to its acceleration by FE+FB=m1a, where m1 is the
positron mass and a=r� is the positron acceleration. The
equations of motion are

x� =
kCq1q2x

m1�x2 + y2 + z2�3/2 +
kLq1Bvy

m1
, �1�

y� =
kCq1q2y

m1�x2 + y2 + z2�3/2 −
kLq1Bvx

m1
, �2�

and
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z� =
kCq1q2z

m1�x2 + y2 + z2�3/2 . �3�

The simulation of the positron motion begins at time
t=0, and the positron begins by following a helical path as a
result of the presence of the magnetic field. The position
coordinates and velocity components at t=0 are written as
�see Fig. 1�:

x�0� = x0 = xg − rc cos��� , �4�

y�0� = y0 = rc sin��� , �5�

z�0� = z0 = − �xg, �6�

x��0� = vx0 = v�0 sin��� , �7�

y��0� = vy0 = v�0 cos��� , �8�

and z��0�=vz0. �An expression for vz0 is derived in the
next paragraph.� Here, the following parameters are defined
at t=0: xg is the guiding center impact parameter, � is an
angle on the z=z0 plane that specifies the positron’s
azimuthal location about the positron’s guiding center
�located at x=xg, y=0�, � is the normalized magnitude of z0
and its value is chosen to be much greater than unity
���1�, rc=m1v�0 / �kLq1B� is the cyclotron radius, and
v�0=�vx0

2 +vy0
2 is the azimuthal velocity. It is also useful to

refer to times t�0, when the positron cyclotron radius is
given by m1v� / �kLq1B�, where v�=�vx

2+vy
2. However, the

positron cyclotron radius and the positron guiding center
�i.e., the positron position averaged over the cyclotron mo-
tion� are referred to only when the positron is sufficiently far
from the antiproton for the positron to undergo near circular
motion in the two dimensions perpendicular to the magnetic
field. The restriction rc�xg is employed to only consider
cases where the antiproton is located outside of the positron
cyclotron orbit projected onto the z=0 plane at t�0. Thus,
with Eqs. �4� and �6�, the conditions ��1 and rc�xg require
that �z0��x0	0. The positron energy at t=0 is

E0 = 1
2m1v0

2 +
kCq1q2

r0
, �9�

where v0=�vx0
2 +vy0

2 +vz0
2 and r0=�x0

2+y0
2+z0

2.

Define ri as a distance of separation between the positron
and antiproton that is large enough for their interaction to be
neglected. The limit that ri approaches infinity is taken, the
positron potential energy is defined to be zero at r=ri, and
the associated total energy is Ei=Ki=

1
2m1�vxi

2 +vyi
2 +vzi

2 �. The
components of the positron velocity at r=ri are written as
vxi=
xvth, vyi=
yvth, and vzi=
zvth, where 
x, 
y, and 
z are
normalized velocity components, vth=�kBT /m1 is the posi-
tron thermal speed, T is the positron plasma temperature, and
kB is Boltzmann’s constant. The value of the parameter � is
chosen large enough that the positron perpendicular kinetic
energy, which is defined as kinetic energy associated with
motion perpendicular to the magnetic field, K�= 1

2m1v�
2 , re-

mains approximately constant for a positron traveling from
distances of separation ri to distances of separation r0. �Such
motion is not simulated.� The approximation K�i=K�0 �that
is, v�i

2 =vxi
2 +vyi

2 =vx0
2 +vy0

2 =v�0
2 � leads to

v�0 = �vxi
2 + vyi

2 . �10�

Using K�i=K�0 and E0=Ki, it follows that

vz0 =�vzi
2 −

2kCq1q2

m1r0
. �11�

The validity of K�i=K�0 is verified in an approximate way
by checking that �K�c−K�0��0.01Ki, where K�c=K��t
= tc�, and the time period tc is defined by r�tc�= 1

2r0 with the
condition that r�t� decreases monotonically for 0� t� tc.

The following parameter values are used for a simulation
named ATRAPsim: B=5.4 T, T=4.2 K, xg=1.5�10−7 m,
�=0, 
x=1, 
y =1, 
z=1, and �=100. The values used for
the magnetic field strength and the positron plasma tempera-
ture in ATRAPsim are consistent with the experimental pa-
rameters reported for the ATRAP experiment in Refs. �2,8�.
Figure 2 shows the classical trajectory of an initially un-
bound positron that encounters an antiproton in the presence
of a uniform magnetic field as computed by ATRAPsim. The
direction of the magnetic field is indicated by the arrow, the

FIG. 1. Positron position at t=0. The y axis points into the
page.

FIG. 2. Three-dimensional parametric plot of a positron trajec-
tory in the electric field of an antiproton and in a uniform magnetic

field. The k̂ dimension, which is parallel to B, is reduced by a factor

of 46 relative to the î and ĵ dimensions.
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position of the antiproton is indicated by the large solid dot,
the position of the positron when the simulation begins is
labeled t=0, and the position of the positron when the simu-
lation ends is labeled t=�. The positron is expected to leave
the vicinity of the antiproton after time t=�. The plot of the
positron trajectory is compressed in the dimension parallel to
the magnetic field by a factor of 46 relative to the two di-
mensions perpendicular to the magnetic field. The interaction
shown in Fig. 2 is an example of what is referred to here as
a quasibound state. The positron crosses the z=0 plane 18
times. A positron will cross the z=0 plane no more than
twice in simulations without a magnetic field. In consider-
ation of this, a quasibound state is defined as a trajectory for
which the positron crosses the z=0 plane three or more
times.

For a sufficiently large distance of separation between the
positron and antiproton, the positron experiences helical mo-

tion, and its guiding center does not move in the î or ĵ direc-
tions noticeably. The pitch angle of the helical motion
changes depending on the distance of separation between the
two particles because the positron acquires kinetic energy as
it gets lower in the potential energy well created by the an-
tiproton’s electric field. During times when the positron is
near the z=0 plane, the positron guiding center drifts around
the antiproton approximately along a circle of radius xg. This
E�B drift about the antiproton, which is shown in Fig. 3,
occurs because the positron is pulled by the antiproton’s
electric field toward the antiproton across the magnetic field.
For ATRAPsim, the size of the quasibound state in a dimen-
sion perpendicular to the magnetic field is approximately
2xg=3�10−7 m.

A positron constrained to move in one dimension will be
trapped in a potential energy well only if its kinetic energy is
less than the local well depth. �The term “local” refers to the
positron’s location.� Quasibound states may seem counterin-
tuitive because the positron’s kinetic energy is always greater
than the local depth of the potential energy well. However,
due to the presence of the magnetic field, the positron is
confined �to cyclotron motion when sufficiently far from the
antiproton� in the two dimensions perpendicular to the mag-
netic field. Confinement in the dimension parallel to the
magnetic field can occur if the positron’s parallel kinetic en-

ergy, which is defined as kinetic energy associated with mo-
tion parallel to the magnetic field, becomes less than the
local well depth. Note that, of the well-defined helical paths
that are observable in Fig. 2, the paths with the largest cy-
clotron radii are also those in which the positron travels the
shortest distances away from the antiproton in the direction
parallel to the magnetic field. A larger cyclotron radius indi-
cates a larger perpendicular kinetic energy and a smaller par-
allel kinetic energy relative to the local well depth. The in-
crease of the positron’s perpendicular kinetic energy takes
place in close vicinity to the antiproton. Such an increase
causes a temporary reduction of the positron’s parallel ki-
netic energy relative to the local well depth and results in
turning points in the motion of the positron in the direction
parallel to the magnetic field.

A simulation named ATHENAsim uses B=3 T, T=15 K,
xg=1.9�10−7 m, �=0, 
x=1, 
y =1, 
z=1, and �=100,
which also results in the formation of a quasibound state.
The values of B and T used in ATHENAsim are consistent
with the experimental parameters of the ATHENA experi-
ment described in Refs. �1,3�. ATRAPsim and ATHENAsim
are each continued up to a time �, which is defined to be the
first instant in time when the following three conditions are
simultaneously met: r���=r0, r����	0, and K�����Ki. The
first condition requires
the distance of separation between the particles at t=� to be
the same as at t=0. The second condition requires the
positron to be moving away from the antiproton at t=�. The
third condition, which is written in terms of K���� for con-
venience, places a restriction on the minimum parallel ki-
netic energy at t=�. When the three conditions are simulta-
neously satisfied, the distance of separation is expected to
increase monotonically for t	�, if the simulation were con-
tinued. The numerical differential equation solver in Math-
ematica is employed to numerically solve Eqs. �1�–�3�. The
total energy of the system, which should remain equal to Ki,
changes as a result of numerical error by less than 0.11% in
ATRAPsim and ATHENAsim. In contrast, the kinetic energy
of the positron can increase substantially as it approaches the
antiproton. For example, in ATRAPsim the positron kinetic
energy reaches a value that is more than twenty times larger
than Ki.

III. ANALYTICAL MODEL AND TIME SCALE
COMPARISONS

Define bqbs as the maximum value of xg that produces a
quasibound state. A corresponding maximum cross section
for the formation of quasibound states is �qbs=�bqbs

2 , which
applies for rcbqbs and which can be used as an approximate
cross section. An analytical expression for bqbs is now de-
rived by considering a simple model based on a comparison
of time scales and based on the approximation, rcxg. A
quasibound state forms when an increase of the positron’s
perpendicular kinetic energy takes place in close vicinity to
the antiproton. Similar increases have been discussed in de-
tail for collisional interactions within pure electron plasmas
�22,23�. In consideration of the finding reported in Refs.
�22,23�, an increase of the positron’s perpendicular kinetic

FIG. 3. The positron trajectory shown in Fig. 2, viewed from
above. �Hence, B points out of the page.� A circle of radius xg

centered on the antiproton is also shown for comparison.
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energy is considered to occur only when the time scale,
�t=xg / �v�z=0, is smaller than the cyclotron period,
�c=2�m1 / �kLq1B�. The time scale associated with the chang-
ing local well depth must be small enough for the cyclotron
adiabatic invariant to be broken. The speed of the positron
at z=0 is approximated as �v�z=0= �2kCq1�q2� / �m1xg��1/2,
which amounts to assuming that the kinetic energy of
the positron at z=0 is much larger than Ki. Taking �t��c
to be the criterion for a quasibound state to form, it follows
that

bqbs1 = C� kCm1

kL
2B2 	1/3

�12�

represents an upper limit on xg for which a quasibound state
can form. Here q1= �q2� has been used, and C has been in-
corporated as a constant that has a value of order unity. It is
interesting to note that a scale length that is the same as Eq.
�12� with C=1 has been used to establish a criterion associ-
ated with guiding center drift atoms, which are weakly
bound atoms with electron dynamics that can be described
using guiding center drift theory �14�.

The dependence of bqbs on 
x, 
y, 
z, �, B, and T is
explored in two sets of simulations. Except for variations
done on a single parameter value, one set of simulations
uses the ATRAPsim parameters and the other set uses the
ATHENAsim parameters. The variations done on a single
parameter value are as follows: The value of 
x=
y is varied
from 0 to 2 in increments of 0.2. The value of 
z is
varied between 0 and 3 in increments of 0.2. The value of �
is varied between 0 and 1.8� in increments of 0.2�. The
value of B is varied from 0.6 to 2 T in increments of 0.2 T
and from 3 to 10 T in increments of 1 T. The value of T is
varied from 1 to 10 K in increments of 1 K and from
20 to 60 K in increments of 10 K. It should be noted that the
parameter study reported here represents an extension of the
range and accuracy of the previously reported parameter
study �21�. Figure 4 shows a comparison of the results of the
parameter study and Eq. �12� using C=1.86. Equation �12� is
found to agree with the simulation results to within an
accuracy of 37%.

The dependence of � on xg is explored in two other sets of
simulations. The positron trajectory is repeatedly computed
using ATRAPsim and ATHENAsim parameters, respectively,
except with xg varied from 5�10−8 m to 2.1�10−7 m in in-

crements of 1�10−8 m and with � values of 0, � /2, �, and
3� /2. The ratio � /�B=0 is plotted in Fig. 5, where �B=0 refers
to the value of � in the absence of a magnetic field and using

x=
y =0 and rc=0. The results indicate that the formation
of quasibound states can increase the positron and antiproton
interaction time substantially compared to the interaction
time in the absence of an external magnetic field. The ratio
� /�B=0 is approximately 1 for xg larger than about
2�10−7 m. The size of a quasibound antihydrogen state in a
dimension perpendicular to the magnetic field is typically
less than 4�10−7 m for ATRAP and ATHENA experimental
parameters.

The expression,

bqbs2 =�kC�q2�
kLviB

, �13�

which was previously arrived at by using what may be
considered a phenomenological approach, was found to
agree with simulation results to within an accuracy of
39% �21�. Equation �13� provides a convenient expression
for estimating the rate of formation of quasibound antihydro-
gen states. Using Eq. �13� for bqbs, an approximate time
scale for the formation of quasibound states is found
to be

�qbs =
1

n
�qbsvi�
=

kLB

�kC�q2�n
, �14�

where n is the positron density, the average is over the
velocity distribution of the positrons, and antiproton motion
is neglected. Note that �qbs is independent of the plasma
temperature because vi within the velocity average cancels
out. Not all interactions with xg�bqbs form quasibound
states. For example, 16 trajectories out of 80 were not qua-

FIG. 4. A comparison of bqbs values according to simulation
results and Eq. �12� using C=1.86.

FIG. 5. Semilogarithmic plot of � /�B=0 according to ATRAPsim
�a� and ATHENAsim �b� with xg varied from 5�10−8 to
2.1�10−7 m and with � values of 0, � /2, �, and 3� /2. Three
values of � /�B=0 �not shown� are over 50.
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sibound states for the results in Fig. 5 for xg�1.4�10−7 m.
�bqbs2=1.4�10−7 m for both ATRAPsim and ATHENAsim
parameters used in Fig. 5.� Hence, the actual time scale for
quasibound state formation may be somewhat larger than
�qbs. Nevertheless, it is worthwhile to compare Eq. �14� to
the time scales for other processes. For example, the time
scale associated with three-body recombination that pro-
duces Rydberg atoms with sufficient binding energy to be
stable �to avoid reionization� in the positron plasma has been
found to approximately be �16�

�tbr =
1.8 � 1021T9/2

n2 �15�

for typical ATRAP and ATHENA experimental parameter
values. Using Eqs. �14� and �15�, and with the simulation
results, the following relationship is found for typical
ATRAP and ATHENA experimental parameter values:
��qbs�tbr. For typical ATRAP experimental parameters
�B ,T ,n�= �5.4 T,4.2 K,1.5�1013 m−3�, time scale values
are �� ,�qbs ,�tbr�= �7.3�10−9 s , 8.0�10−5 s , 5.1�10−3 s�,
where the value of � is from ATRAPsim, and the positron
density is from Ref. �24�. For typical ATHENA experimental
parameters �B ,T ,n�= �3 T,15 K,1.7�1014 m−3�, time scale
values are �� ,�qbs ,�tbr�= �2.7�10−9 s , 3.9�10−6 s , 1.2
�10−2 s�, where the value of � is from ATHENAsim, and the
positron density is from Ref. �3�.

IV. DISCUSSION AND CONCLUDING SUMMARY

The relationship �qbs�tbr indicates that quasibound
states may form more frequently than stable Rydberg
states in antihydrogen production experiments. In fact, the
formation of quasibound states may affect antihydrogen pro-
duction experiments by affecting the three-body recombina-
tion rate. The three-body recombination process begins when
an initially unbound positron passes near an antiproton,
while a second positron is also near, and enough energy is
transferred to the second positron for the first positron and
the antiproton to form an atom. The formation of a quasi-
bound state may increase the time a positron resides near an
antiproton and the probability for a second positron to be
near enough to take part in the three-body recombination
process. It should be possible, in principle, to predict
whether the formation of quasibound states affects the three-
body recombination rate by simulating two positrons and an
antiproton interacting with each other and conducting a
Monte Carlo study similar to that in Ref. �16�. However, it
may be difficult to manage the computation time if the full
three-dimensional positron motion is computed. It would
also be instructive to have experimental measurements of the
dependence of three-body recombination on magnetic field
strength under conditions where the analytical model pre-
sented here applies �i.e., for rcbqbs�. The results of such
measurements may provide indications of whether quasi-
bound state formation has a noticeable effect on three-body
recombination. It should be noted that, in analyzing the re-
sults of such measurements, the possible effect of arrested
three-body capture �17�, which occurs if newly formed atoms

do not remain within the plasma for sufficient time, must be
considered.

The formation of quasibound states may affect the rate of
diffusion of positrons across a magnetic field. Positron diffu-
sion transverse to a magnetic field occurs, in part, because
the guiding center position of a positron shifts with each
binary interaction between a positron and an antiproton. The
shift associated with a single binary interaction is normally
not larger than a typical cyclotron radius. Figure 2 shows that
the cyclotron radius at t=0 is much smaller than the distance
of separation between the guiding center position at t=0 and
the guiding center position at t=�. The simulation indicates
that a binary interaction that results in the formation of a
quasibound state can cause a shift of the positron guiding
center that is much larger than the cyclotron radius before the
interaction.

An understanding of the effect that the formation of qua-
sibound states may have on three-body recombination and
positron diffusion remains to be developed. An understand-
ing of the effect that antiproton motion may have on the
formation and duration of quasibound states also remains to
be developed. It might be expected that for antiproton mo-
tion parallel to the magnetic field, if the antiproton speed is
much less than the positron thermal speed, the results pre-
sented here regarding the formation and duration of quasi-
bound states would continue to apply. In fact, it is interesting
to note that Eq. �12� shows no dependence on vzi. It might
also be expected that for antiproton motion perpendicular to
the magnetic field, if the antiproton speed is much less than
the positron thermal speed, the results presented here regard-
ing the formation, but not necessarily the duration, of quasi-
bound states would continue to apply. To derive Eq. �12�, an
increase of the positron’s perpendicular kinetic energy was
considered to occur during a time period smaller than the
positron cyclotron period. If the antiproton speed perpen-
dicular to the magnetic field is much less than the positron
thermal speed, then the antiproton will move a distance
much less than the positron cyclotron radius during a time
period smaller than the positron cyclotron period. It should
also be mentioned that, because a future goal of antihydro-
gen production experiments is to trap antihydrogen in a mag-
netic well, antiproton temperatures less than �1 K will be
needed, and nested Penning traps may be operated with the
antiprotons having a temperature that is much smaller than
that of the positrons �5�.

In summary, classical trajectory simulations indicate
the formation of quasibound states of antihydrogen under
conditions reported in recent antihydrogen production
experiments. An expression that can be used to predict
an approximate cross section for the formation of quasi-
bound antihydrogen states was derived, and reasonable
agreement with simulation results was found for the
parameters considered. The time a positron and antiproton
interact while in a quasibound state was found in many
cases to be much greater than the interaction time in the
absence of an external magnetic field. An expression for
an approximate time scale associated with the rate of forma-
tion of quasibound antihydrogen states was obtained. It
was found that quasibound states may form more frequently
than stable Rydberg states in antihydrogen production
experiments.
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